
Michael Garfield Sørensen, CeDeT 1

REAPING THE BENEFITS OF ORACLE8I AND ORACLE9IAS
EOUG2002: 13.05.2002

Michael Garfield Sørensen
 Forlaget Thomson / CeDeT, Denmark

Summary

This paper presents the solution for an on-line system based on Oracle8i and
Oracle9iAS reaping the benefits of combining some of the newest technologies with
good old-fashioned relational database lookups. Technologies utilized include:

•  PL/SQL Web Toolkit for fast and flexible database access
•  Meta data replication to give current-awareness, and automated document transfers for

daily updates
•  Relational database tables to hold the structure of XML documents combined with

CLOBs to allow fast on-the-fly XML-chunking and -caching
•  Function-based indexes to create on-the-fly TOC's of XML documents
•  JavaServlet with XSLT to transform XML to HTML
•  PL/SQL Gateway Cache to speedup re-occurring (big) requests
•  interMedia Text to give fast free-text searches with "AND" and "NEAR" operators in

combination with wildcards

Introduction

Two years ago Forlaget Thomson decided to invest in an on-line system with the two
biggest brands on the Danish legal information market :

•  Karnov: Primary law (statues) with commentaries
•  UfR: Case reports

- Why an on-line system?
Well, we all know that it's "e-business or no business".

- Why now?
To stay ahead of (or maybe even trash) the competition!

- Why choose Oracle as the platform?
Forlaget Thomson's production system is already based on Oracle, so it is a platform
they are familiar with in terms of daily production and IT development. A prototype
based on the existing production database, structure and content, was easily
established - giving hope to the assumption that it wouldn't necessarily require a lot of
additional internal resources to feed an on-line system.

The on-line system is a web application/interface on top of (an almost1 exact replica of)
the production database. The system has daily updates, more content, better (or more)
functionality and is less troublesome to use than the existing print and CD-ROM
products.

It's not 24x7 - and it's not open to the world (you have to pay to use it).

                                                          
1 The reason for it being only an almost exact replica will be explained later!



Michael Garfield Sørensen, CeDeT 2

Environment

From “Oracle 9i Application Server Using the PL/SQL Gateway” (OTN, 2000-2001)

The on-line platform is a Sun Solaris with Oracle8i (8.1.7.2.0) and Oracle9iAS (1.0.2.0,
mod_plsql 3.0.0.8.3). The majority of the code is written in PL/SQL as stored
procedures utilizing the PL/SQL Web Toolkit and interMedia Text. A single JavaServlet
utilizing the Oracle XML Development Kit is responsible for transforming XML to HTML
with CSS using XSLT.

Simple example PL/SQL code utilizing PL/SQL Web Toolkit:

PROCEDURE produktfunktioner(vid stam_productversion.versid%TYPE:=NULL) IS
  reg VARCHAR2(20):='';
BEGIN
  IF NVL(vid,'*')=ilseutil.vidKarnov THEN
    reg:='?reg=Syst.reg.';
  ELSIF NVL(vid,'*')=ilseutil.vidUfR THEN
    reg:='?reg=Kron.reg.';
  END IF;
  ilsehtml.helsidetop('Funktioner');
  htp.p('Der kan v&aelig;lges mellem f&oslash;lgende funktioner:<br><br>');
  htp.p('<a href="ilseprod.prodframe?frame1url=ilsehtml.topline'||reg||
    '&frame2url=ilselog.faq" target="thomsondk_main"><b>FAQ</b></a><br>');
  htp.p('Ofte spurgte sp&oslash;rgsm&aring;l og svar!<br><br>');
  ...
  ilsehtml.helsidebund;
END produktfunktioner;

⇒  ilsehtml is a package containing common procedures for producing often used HTML!



Michael Garfield Sørensen, CeDeT 3

Replication and automated transfers

Overview

To give current-awareness document meta data is replicated on an hourly basis using
simple, standard single Master to read-only Slave replication. We're using (almost) the
same database structure for production and on-line. Most constraints in the on-line
database have been changed to default deferred and a few to on delete cascade in
order to make replication work and to clean-up unwanted data. Before the documents
are transferred to on-line (temporary storage) they undergo a minor transformation:

•  Unicode/character entities are changed to something that the XML parser and
the XSLT processor can handle gracefully (and is immediately usable in HTML):
before:&#10003;
after: <img src="check.gif" alt="" border="0" />

•  For performance reasons (hyper-)link validation is done beforehand:
      before:<LR IDREF="LBKG2000123.§11" />
   after: <LR IDREF="LBKG2000123.§11" LINKSTAT="INAKTIV" />

•  Content is put together in one CLOB for efficiency (see XML-chunking and -
caching).

Warning: Use temporary CLOBs with caution in Oracle 8.1.5 and 8.1.6 (bug 122619)

In order for this transformation not to interfere with ungoing document processing,
documents are only transferred once a day (currently approx. 20-30 new or modified
per day). All replication and transfers are automated using Oracle's job queue
(DBMS_JOB). A database table trigger is responsible for queuing modified or new
documents for on-line transfer. Indexing (keeping the interMedia Text indexes up-to-
date) is a different story, see interMedia Text.



Michael Garfield Sørensen, CeDeT 4

XML-chunking and -caching

Many of the documents in the database are of a considerable size. To transform them
on the server-side to HTML on-the-fly using XSLT may not be an issue. But sending
HTML documents which are more than a couple of 100KB to the user's browser is an
issue. So we came up with a fairly generic (in our context) algorithm to do XML-
chunking; i.e. splitting an XML document in reasonable (not only in terms of size, but
also in terms of presentation) parts of a size not much larger than some fixed  preferred
(maximum) size. Even if "the chunking" is very fast, it's still faster to reuse previously
created chunks, thus introducing "caching of chunks". The ability to do it on-the-fly as
part of the on-line application avoids the need to have one or more additional
processes to prepare documents for on-line.

The database structure for documents consists of five tables, DOCUMENTDOCTYPE
containing header information, FAMILY containing a representation of the structure of
the XML, CONTENT containing the content of the XML document divided into multiple
rows, DOCUMENTCONTENT containing the whole XML document as one CLOB, and
DOCUMENTCHUNK containing the chunks2. The DOCUMENTDOCTYPE, FAMILY and CONTENT
tables have been maintained (but not put to full use; until now) by the existing
document-storage system at Forlaget Thomson for many years (pre-XML even, using it
to store valid, normalized SGML). If this had not been the case, the XML-chunking
solution would not have been possible! Definitions of these three tables are given
below with sufficient explanation of the columns to understand the chunking algorithm.

DOCUMENTDOCTYPE
  NORMID NOT NULL VARCHAR2(255) -- primary key, unique document id
  TOPID  NOT NULL NUMBER(11)    -- unique id (used in FAMILY and CONTENT)
  ...

FAMILY
TOPID      NOT NULL NUMBER(11) -- (topid,id) is the primary key, uniquely

  ID         NOT NULL NUMBER(11)    identifying a node (tag,text) in the XML
  MOTHER              NUMBER(11) -- id of parent element (within same topid)
  FIRSTCHILD          NUMBER(11) -- id of first child element (-"-)
  NEXTSISTER          NUMBER(11) -- id of parents next child (-"-)
  BYTESTART           NUMBER(11) -- byte offsets in the document of the first
  BYTEEND             NUMBER(11)    and last characters of the node itself
  ...

CONTENT
 TOPID   NOT NULL NUMBER(11) -- (topid,id,contno) is the primary key, each
 ID      NOT NULL NUMBER(11)    node in FAMILY has one or more rows here
 CONTNO  NOT NULL NUMBER(3)     with the actual content
 CONTENT VARCHAR2(2000)      -- content split at maximum 2000 characters
 ...

Let's start looking at the XML-chunking and -caching backwards. When we have the
XML-chunk that holds the data we want to deliver on-line, we store it in a table with a
unique id and call (via a HTTP-redirect) the JavaServlet responsible for transforming it
to HTML (see XML to HTML transformation using XSLT):

                                                          
2 The tables DOCUMENTCONTENT and DOCUMENTCHUNK are only in the on-line database.



Michael Garfield Sørensen, CeDeT 5
DefaultMaxSize CONSTANT NUMBER:=43008; -- 42K
JavaXMLServlet CONSTANT VARCHAR2(16):='/servlet/IlseXML';

PROCEDURE docxml(cid documentchunk.chunkid%TYPE) IS
BEGIN
  owa_util.redirect_url(
    'http://'||owa_util.get_cgi_env('HTTP_HOST')||JavaXMLServlet||
    '?cid='||TO_CHAR(cid),TRUE);
END;

...
/* at this point c_lob contains the XML-chunk we want */
SELECT seq_chunkid.NEXTVAL INTO cid FROM DUAL; -- get unique chunk id
BEGIN -- insert chunk into table
  INSERT INTO documentchunk(
   chunkid,normid,dato,chunkno,chunk,maxsiz,bytestart,byteend)
  VALUES(
   cid,dt_rec.normid,SYSDATE,chunk_count,c_lob,msz,byte_start,byte_end);
  COMMIT;
EXCEPTION
  WHEN DUP_VAL_ON_INDEX THEN
    ...
END;
docxml(cid); -- deliver

Let's know assume we request a chunk (requesting a document itself results in
requesting the first chunk) of a document. First thing we do is check if the chunk has
already been created (by a previous request):

...
BEGIN -- check IF chunk already exists
  SELECT dc.chunkid
   INTO  cid
   FROM  documentchunk dc
   WHERE dc.normid=nid   -- unique document identifier
   AND   dc.maxsiz=msz   -- preferred chunk (maximum) size
   AND   dc.chunkno=cno; -- requested chunk number
  docxml(cid); -- the chunk already exists so just deliver it
EXCEPTION
  WHEN NO_DATA_FOUND THEN -- calculate AND create chunk
    ...

Now let's look at the main steps of creating a chunk. The new chunk is build (in
PL/SQL) as a temporary CLOB (referred to as tmplob in the following). tmplob is
initialized with a DOCUMENT root tag with attributes containing information needed in the
XSLT transformation. We now call a procedure, docsplit (described in detail below),
that figures out the actual splitting by returning information about where a chunk ends if
the chunking was started at a certain offset in the document. docsplit is called
successively (in a loop) until the requested chunk is reached; always starting with the
first chunk from the start of the document. If the chunk requested is not the first (or last)
chunk of the document then additional CHUNKREF tags containing hyperlinks to next (or
previous) chunk is added to tmplob. This is what - in the end - makes it possible for the
user to navigate between chunks.

If the chunk is not the first in the document, then just adding the chunk to tmplob would
(most likely) result in XML that is not well-formed. The chunk may contain end-tags for
tags that appear in the document before the position where the chunk is started. To
solve this issue we loop through parent elements (mother column in the FAMILY table)



Michael Garfield Sørensen, CeDeT 6
of the first element in the chunk - bottom-up. And in reversed order, top-down -
appends the corresponding tags.

An empty CHUNKSTART tag is added to tmplob before the actual content from the
document is appended (using DBMS_LOB.COPY and the values returned by docsplit)
to tmplob. And an empty CHUNKSLUT tag is added after. Doing this with CLOBs gives
very good performance.

If the chunk is not the last in the document, then just like the before more is needed.
This time the end-tags that appear outside the chunk, but actually belongs to start-tags
within the chunk needs to be appended (with XML it has got to be well-formed). Again
this is achieved by looping through parents, but this time appending the corresponding
end-tags (rather than the tags for the parent elements themselves). The tmplob is
finished of with a DOCUMENT end-tag, stored in the database and delivered as HTML by
the JavaServlet. The overall structure of a chunk is:

<DOCUMENT NORMID="..."><!-- root element -->
 <CHUNKREFS>
  <CHUNKREF HREF="...?{chunkno-1}" PN="P"/><!--hyperlink to previous chunk-->
  <CHUNKREF HREF="...?{chunkno+1}" PN="N"/><!--hyperlink to next chunk-->
 </CHUNKREFS>
 <!-- appended start-tags to ensure well-formedness -->
 <LOV>
  <N1>
   <CHUNKSTART/>
   <!-- here starts the data from the document -->
   <N2>
    <P>
     ...
    </P>
   <!-- here ends the data from the document -->
   <CHUNKSLUT/>
   <!-- appended end-tags to ensure well-formedness -->
   </N2>
  </N1>
 </LOV>
</DOCUMENT>

The figures in the appendix shows a real example. Now let's turn to the actual splitting
algorithm - docsplit. Given an entry point; an element in FAMILY identified by tid,
start_id, calculate the size of the element with contents (if any) by subtracting it's
byte offset (bytestart) from the byte offset of it's parent's next child (nextsister
column in FAMILY):

SELECT fns.bytestart-f.bytestart
 INTO  size_of_element_with_content
 FROM  family fns,family f
 WHERE f.topid=tid
 AND   f.id=startid
 AND   fns.topid=f.topid
 AND   fns.id=f.nextsister;

If the actual element is the last child (has no nextsister) then we can check it's
parent's (mother's) nextsister. If at some point there are no more possible
nextsisters to examine we have reached the end of the (sub-)tree!



Michael Garfield Sørensen, CeDeT 7
If the element we're looking at is not suitable for chunking then we are done (even if
the chunk at this point is a bit too large). Elements not suited for chunking include
tables, graphics, lists, headings, and paragraphs because it would split the documents
in awkward places not fit for presentation. Also if the element has no children (being
text or an empty tag) it is obviously not suited for further chunking.

If the current element is suited for chunking and has a size that is greater than the
preferred default (maximum) chunk size, then calculate the size you would get if you
looked at it's first child (firstchild). This is done by calling docsplit recursively.

Actually that's the main logic of the splitting algorithm - calculating sizes of elements
and sub-elements recursively. It sounds simple but the actual code doesn't look that
simple. There's quite a bit of house-keeping of how far have we gotten (how many
levels have we transcended into sub-structures of the document) and what to do if the
tags following the splitting point are all end-tags - no good starting of a new (the next)
chunk with end-tags.

All selects to do the calculations are using the primary keys on FAMILY and CONTENT
and the algorithm is therefore very fast - based on the strengths of relational database
lookups.

Function-based indexing

To serve table of content for documents on-the-fly we created a function-based index
on the CONTENT table. The function returns a number for the N1, N2, ... N7 start-tags and
NULL for all others. N1, N2, ..., N7 are the elements used for making logical sections and
sub-sections in the documents. Thus the index only contains entries pointing at the
start of new sections. Which make it very fast to receive exactly those to be used in a
TOC:

CREATE OR REPLACE FUNCTION pr_niveaunr(
  sgmlstr VARCHAR2)
  RETURN NUMBER DETERMINISTIC
IS
BEGIN
  IF NVL(LENGTH(sgmlstr),0)<4 THEN
    RETURN NULL;
  ELSE
    IF SUBSTR(sgmlstr,1,3) IN ('<N1','<N2','<N3','<N4','<N5','<N6','<N7')
    AND SUBSTR(sgmlstr,4,1) IN ('>',' ') THEN
      RETURN TO_NUMBER(SUBSTR(sgmlstr,3,1));
    ELSE
      RETURN NULL;
    END IF;
  END IF;
END;
/

-- topid uniquely defines the document
CREATE INDEX content_inx_niveaunr ON content(topid,pr_niveaunr(content));

-- remember to analyze or the index will not work
ANALYZE TABLE content COMPUTE STATISTICS;

-- remember special privileges and initSID.ora settings
-- example of using the index
SELECT c.* FROM  content c WHERE c.topid=&&tid AND pr_niveaunr(c.content)=1;



Michael Garfield Sørensen, CeDeT 8

XML to HTML conversion using XSLT

We started out wanting to use Oracle's XML Development Kit (XDK) for PL/SQL
preferring to keeping all the code in PL/SQL. We soon discovered that it is not
performing very well! So we had to do it outside the database with a JavaServlet which
in our case performs very well (up-to 16 times faster than with PL/SQL). The main part
of the Java code looks like this:

public void doGet(HttpServletRequest req, HttpServletResponse res)
                throws ServletException, IOException {
    Clob   c_lob = null;
    String selst;

    try {
        conn.setAutoCommit (false);

        String cid = req.getParameter("cid");

        // Create a Statement and Read XML into Clob
        Statement stmt = conn.createStatement ();
        selst = "select chunk from documentchunk where chunkid='" + cid + "'";
        OracleResultSet rset = (OracleResultSet)stmt.executeQuery(selst);
        while (rset.next ()) {
          c_lob = ((OracleResultSet)rset).getClob (1);
        }
        rset.close();
        stmt.close();

        // Read and Parse XSLT (from filesys)
        DOMParser parser;
        URL xslURL;
        parser = new DOMParser();
        parser.setBaseURL(null);
        parser.setPreserveWhitespace (true);
        parser.setValidationMode(false);
        parser.setBaseURL(null);
        xslURL = createURL("http:///onlxsl/thomson.xsl");
        parser.parse(xslURL);
        XMLDocument xslDoc = parser.getDocument();

        // Read and Parse XML (in Clob)
        parser.setPreserveWhitespace (true);
        parser.setValidationMode(false);
        parser.parse(c_lob.getCharacterStream() );
        XMLDocument xmlDoc = parser.getDocument();

        XSLProcessor processor = new XSLProcessor();
        processor.showWarnings(true);
        processor.setErrorStream(System.err);
        XSLStylesheet stylesheet = new XSLStylesheet( xslDoc, xslURL );
        res.setContentType("text/html");
        PrintWriter out = new PrintWriter (res.getOutputStream());
        processor.processXSL(stylesheet, xmlDoc, out);
        out.close();

    } catch ( SQLException e ) {
       System.err.println("A database error occurred." + e.getMessage());
    }

  } // doGet



Michael Garfield Sørensen, CeDeT 9

A good starting point when using XSLT to transform XML into HTML with Cascading
Style Sheets (CSS) is to map element names in the XML to CSS classes of the same
name. This is demonstrated in the sample XSLT and CSS given below for the TITEL
element (and .titel class). The sample XSLT also demonstrate how the result of link
validation (the LINKSTAT attribute on reference elements) is used to create different
types of (or no) HTML hyperlinks:

Sample XSLT:
<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0"
                xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="LOV">
<A NAME="{@ID}"></A>
<TABLE BORDER="0" CELLSPACING="0" CELLPADDING="2">

<xsl:apply-templates />
</TABLE>

</xsl:template>

<!-- title elements -->
<xsl:template match="TITEL">

<TR>
<TD COLSPAN="3">

<SPAN CLASS="titel">
<xsl:apply-templates/>
<BR/><BR/>

</SPAN>
</TD>

</TR>
</xsl:template>

<xsl:template match="N0">
<BR/>
<xsl:apply-templates />

</xsl:template>
...

<!-- **** References  **** -->
<!-- references to other "documents" with explicit inline link text -->
<xsl:template match="LR|UR|URB">
   <xsl:choose>

<xsl:when test="@LINKSTAT = 'INTERN'">
<A HREF="#{@IDREF}">

<SPAN CLASS="dokref"><xsl:apply-templates/></SPAN>
</A>

</xsl:when>
<xsl:when test="@LINKSTAT = 'EKSTERN'">

<A TARGET="thomsondk_main" HREF="{$docbyref_prc}?idr={@IDREF}">
<SPAN CLASS="dokref"><xsl:apply-templates/></SPAN>

</A>
</xsl:when>
<xsl:when test="@LINKSTAT = 'INAKTIV'">

<xsl:apply-templates/>
</xsl:when>

   </xsl:choose>
</xsl:template>
...

⇒  XSLT is also used to do XML to PDF transformation via XSL:FO(P). With XML you can easily have
multiple output formats (HTML, PDF, Folio Flat-File)



Michael Garfield Sørensen, CeDeT 10

Sample CSS:
BODY
{
    COLOR: #333333;
    FONT-FAMILY: Verdana, Georgia, 'Trebuchet MS', 'Times New Roman';
    BACKGROUND-COLOR: #eeeeee
}
A
{
    COLOR: #003399;
    FONT-FAMILY: Verdana, Georgia, 'Trebuchet MS', 'Times New Roman';
    TEXT-DECORATION: underline
}
A:hover
{
    COLOR: #003399
}
.titel
{
    FONT-WEIGHT: bold;
    FONT-SIZE: 15pt;
    COLOR: #333333;
    LINE-HEIGHT: 15pt;
    FONT-FAMILY: Verdana, Georgia, 'Trebuchet MS', 'Times New Roman'
}
...

PL/SQL Gateway Cache

Starting with Oracle9iAS there is a caching mechanism available as part of the PL/SQL
Web Toolkit through the owa_cache package. It allows you to cache created HTML
pages in three ways: Using an expiration technique or using a user- or system-level
validation technique. See figure on page 2. As explained in the Oracle9iAS
Documentation the expiration technique is the fastest (since it fetches from the cache
without invoking a stored procedure in the database) but is more difficult to control than
the validation technique. We have used the validation technique on system-level for
(amongst other things) caching the result of interMedia searches - see example below.
We would also have liked to use user-level caching, but after having set
KeepAlive=off3 in the Apache configuration, user-level caching seems to have no
effect (which makes sense but the documentation doesn't mention any scenarios that
would cause user-level caching not to work).

Sample PL/SQL for system-level caching using the validation technique:
cacheLevel CONSTANT VARCHAR2(6):='SYSTEM';

PROCEDURE <procedure_name>(<parameter...>)
IS
  <variable...>
  etag VARCHAR2(255);
  elvl VARCHAR2(10);
BEGIN
<code that needs to be performed every time (logging for example)>

                                                          
3 The reason for this being that with KeepAlive=On the server occasionally took up to as much 20
minutes before it decided to respond to a request. We've experienced the same thing on the AIX platform
but surprisingly not on the NT platform! And we still haven't figured out why!?



Michael Garfield Sørensen, CeDeT 11
  etag:=owa_cache.get_etag;
  elvl:=owa_cache.get_level;
  IF etag IS NOT NULL AND elvl IS NOT NULL THEN -- been here before
    IF etag=TO_CHAR(SYSDATE,'YYYYMMDD') AND elvl=ilseprod.cacheLevel THEN
      owa_cache.set_not_modified; -- today nothing has changed
      RETURN; -- so we won't go get it again
    END IF;
  END IF;
  owa_cache.set_cache(
    p_etag=>TO_CHAR(SYSDATE,'YYYYMMDD'),
    p_level=>cacheLevel); -- cache new page (produced below)

  <code that produces the page>
END;

The above code works well for interMedia free-text searches, since we're only indexing
new/modified documents once per day.

interMedia Text
You face quite a few challenges when you get involved in using interMedia Text for
indexing large amounts of XML data. Here are the five major challenges that we've run
into:

1. Setting up the correct indexes for the fastest possible free-text searches with
wildcards. Deciding (after having understood) whether to do zone- or field-indexing (or
combinations) and which configuration options are available, where to set them, and
what effect they have. The DBA did most of this for us!

2. Writing the optimal SQL to utilize the indexes. We had a hard time getting the CBO to
use the interMedia indexes if we used more than a couple of joins in the queries. So we
ended up with doing simple selects only based on the interMedia indexes, and
afterwards checking if other search criteria - requiring meta data lookups - was fulfilled:

  TYPE s_recType IS RECORD (
    srt INTEGER,
    rid ROWID,
    loc VARCHAR2(1),
    nid documentcontent.normid%TYPE);
  TYPE s_curType IS REF CURSOR RETURN s_recType;
  TYPE s_tabType IS TABLE OF s_recType INDEX BY BINARY_INTEGER;
  s_cur s_curType;
  s_rec s_recType;
  s_tab s_tabType;
  s_inx BINARY_INTEGER:=0;
BEGIN
  ...
  IF <LAWS and NOTES> THEN -- within LOV and NOTER elements
    OPEN s_cur FOR
      SELECT /*+ FIRST_ROWS */ SCORE(1),dc.ROWID,'L',NULL
       FROM  documentcontent dc
       WHERE CONTAINS(dc.content,'('||str||') WITHIN LOV',1)>0
      UNION ALL
      SELECT /*+ FIRST_ROWS */ SCORE(2),dc.ROWID,'N',NULL
       FROM  documentcontent dc
       WHERE CONTAINS(dc.content,'('||str||') WITHIN NOTER',2)>0
       ORDER BY 1 DESC;
  ELSIF <LAWS (and not NOTES)> THEN -- within LOV element
    OPEN s_cur FOR
      SELECT /*+ FIRST_ROWS */ SCORE(1),dc.ROWID,'L',NULL
       FROM  documentcontent dc
       WHERE CONTAINS(dc.content,'('||str||') WITHIN LOV',1)>0



Michael Garfield Sørensen, CeDeT 12
  ELSIF <CASES (and not NOTES)> THEN
    OPEN s_cur FOR
      SELECT /*+ FIRST_ROWS */ SCORE(1),dc.ROWID,'D',NULL
       FROM  documentcontent dc
       WHERE CONTAINS(dc.content,'('||str||') WITHIN DOM',1)>0;
  ELSIF <CASES and NOTES> THEN -- within DOM element
    ...
  ELSIF <NOTES (and not CASES and not LAWS)> THEN
    ...
  END IF;
  ...
  LOOP
    FETCH s_cur INTO s_rec;
    EXIT WHEN s_cur%NOTFOUND;
    BEGIN
      IF s_rec.loc='D' THEN
        -- check other search criteria for cases - (D)OM element
      ELSIF s_rec.loc='L' THEN
        -- check other search criteria for laws - (L)OV element
      ELSIF s_rec.loc='N' THEN
        -- check other search criteria for notes - (N)OTER element
      END IF;
      -- other search criteria has been matched
      s_inx:=s_inx+1;
      s_tab(s_inx).srt:=s_rec.srt;
      s_tab(s_inx).rid:=s_rec.rid;
      s_tab(s_inx).loc:=s_rec.loc;
      s_tab(s_inx).nid:=s_rec.nid;
    EXCEPTION
      WHEN NO_DATA_FOUND THEN
        -- other search criteria not matched, ignore
        NULL;
    END;
    ...
    EXIT WHEN s_inx>maxNumberOfHits;
    ...
  END LOOP;
  CLOSE s_cur;
  ... -- loop through s_tab(1..s_inx) producing the HTML
END;

3. We started out with using the ctxsrv server process which keeps the interMedia
indexes up-to-date as fast as possible. But we soon saw the negative effect this
process had on database and machine performance. So instead we decided to
synchronize the index once a day during night-time using the ctx_ddl.sync_index
procedure.

4. Getting the highlighting to work with our chunks.

5. And (of course) the wonderful joy of having to URL en-/decode search strings
containing special interMedia operators.

Conclusion
With Oracle8i and Oracle9iAS you do have a platform well-suited for developing on-line
systems. There are some pitfalls to avoid, especially with the newest features. But by
combining new features with traditional relational database features you can create
powerful solutions:

Combine to reap the benefits of Oracle8i and Oracle9iAS!



Michael Garfield Sørensen, CeDeT 13
Appendix: Figures

Full document:



Michael Garfield Sørensen, CeDeT 14
Chunks:



Michael Garfield Sørensen, CeDeT 15
Chunk 1 presented to the user:

Another chunk - paragraph 1 with note(s):

N
)

CHUNK NAVIGATIO

NOTE (BELOW
PARAGRAPH WITH NOTES (POPUP)


